Dissimilarity learning for nominal data

نویسندگان

  • Victor Cheng
  • Chun-hung Li
  • James T. Kwok
  • Chi-Kwong Li
چکیده

Defining a good distance (dissimilarity) measure between patterns is of crucial importance in many classification and clustering algorithms. While a lot of work has been performed on continuous attributes, nominal attributes are more difficult to handle. A popular approach is to use the value difference metric (VDM) to define a real-valued distance measure on nominal values. However, VDM treats the attributes separately and ignores any possible interactions among attributes. In this paper, we propose the use of adaptive dissimilarity matrices for measuring the dissimilarities between nominal values. These matrices are learned via optimizing an error function on the training samples. Experimental results show that this approach leads to better classification performance. Moreover, it also allows easier interpretation of (dis)similarity between different nominal values. keywords: nominal attributes, pattern classification, dissimilarities, distance measure, classifiers

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Analogical Dissimilarity: Definition, Algorithms and Two Experiments in Machine Learning

This paper defines the notion of analogical dissimilarity between four objects, with a special focus on objects structured as sequences. Firstly, it studies the case where the four objects have a null analogical dissimilarity, i.e. are in analogical proportion. Secondly, when one of these objects is unknown, it gives algorithms to compute it. Thirdly, it tackles the problem of defining analogic...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Learning by Analogy: A Classification Rule for Binary and Nominal Data

This paper deals with learning to classify by using an approximation of the analogical proportion between four objects. These objects are described by binary and nominal attributes. Firstly, the paper recalls what is an analogical proportion between four objects, then it introduces a measure called ”analogical dissimilarity”, reflecting how close four objects are from being in an analogical pro...

متن کامل

How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?

For complex data sets, the pairwise similarity or dissimilarity of data often serves as the interface of the application scenario to the machine learning tool. Hence, the final result of training is severely influenced by the choice of the dissimilarity measure. While dissimilarity measures for supervised settings can eventually be compared by the classification error, the situation is less cle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2004